
Rounding Techniques in Approximation Algorithms

Lecture 2: Independent Randomized Rounding for Congestion
Lecturer: Nathan Klein

1 Recap of Relax and Round: Polyhedral View

Remember the relax and round framework we studied last time.

Relax and Round

As input we get a discrete optimization problem O. Now, we:

1. Model O as an Integer Linear Program (ILP): linear constraints with the requirement
that the solution x is integer.

2. Relax the condition to x ∈ Rn, giving us a Linear Program (LP). Solve the resulting
LP using the ellipsoid method to obtain a solution x.

3. Round the point x to a solution to O.

It is convenient to think about the ILP and the LP as producing solutions to optimization
problems over convex polyhedra.

Definition 1.1 (Convex Polyhedron/Polytope). A convex polyhedron is the intersection of finitely many
half-spaces of the form aTx ≥ b for a ∈ Rn, b ∈ R. A convex polytope is a bounded convex polyhedron. See
Fig. 1.

Figure 1: On the left is a convex polyhedron defined by two half-planes, and on the right is a
convex polytope defined by four half-planes.

Thus, the set of linear constraints for any ILP form a polyhedron (or a polytope), as do the set
of all constraints for an LP. We can therefore think of an ILP/LP pair as follows. First, define a
polyhedron P with a separation oracle. Then, the ILP (left) and LP (right) are:

min c(x)
s.t. x ∈ P

x ∈ Zn

min c(x)
s.t. x ∈ P

x ∈ Rn

This highlights the importance of the integrality gap: it gives us the largest possible difference
between integer points and real points in a polyhedron. So really, integrality gap is defined with
respect to a polyhedron.
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Here is an example of the relax-and-round framework geometrically. Suppose the marked
points in Z2 are the feasible solutions to our optimization problem O. Then the blue polytope P is
a valid ILP for the problem since P ∩Z2 is the set of feasible solutions for O.

Figure 2: In purple is a polytope P with a separation oracle. In red is the convex hull of the integer
coordinates in that polytope. The ILP returns an optimal vertex of the red set. The relaxed LP
returns an optimal vertex of the purple set. The integrality gap measures how different these two
vertices can be in terms of cost.

If we could find a separation oracle for the red convex set for an NP-Hard problem, we would
prove P=NP. So, such a thing likely does not exist, and we have to settle for approximations of the
red polytope. Let’s redefine the relax-and-round framework with our new language:

Relax and Round: Polyhedral Version

As input we get an instance of a discrete optimization problem O. Now, we:

1. Find a polyhedron P with a polynomial time separation oracle such that P ∩Zn is the
set of feasible solutions to O.

2. Relax our problem: use the ellipsoid method to find an optimal vertex x ∈ Rn in P.

3. Round the point x to a solution to O.

There are many choices for P, and as we saw in the last lecture, often the most natural choice
can be strengthened with additional inequalities. We will explore this further in later lectures.

Notice that in Fig. 2 and in the above definition I say we find an optimal vertex. This is because
given a polyhedron, if we optimize in any direction, an optimal solution (so long as it is finite)
will always be attained at some vertex of that set.

Definition 1.2 (Vertex). Given a polyhedron P, a point v ∈ P is a vertex of P if and only if there is no
direction 0 6= d ∈ Rn such that v + d ∈ P and v− d ∈ P.

A nice property of polytopes is the following:

Theorem 1.3 (Carathéodory’s Theorem). Let x lie in the convex hull of a set S ⊆ Rn. Then x can be
written as the convex combination of at most n + 1 points of S.

It also gives the following fact immediately:

Fact 1.4. The optimum value of an LP can always be attained at a vertex.

Proof. Let a ∈ P be an optimal solution. By Carathéodory, we can write a as a convex combination
of vertices. So some vertex has cost at most that of a.
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2 Independent Randomized Rounding

Last time we saw how to round the natural LP for Vertex Cover to achieve a 2-approximation using
threshold rounding, which is optimal under the Unique Games Conjecture. Today, we will look at
another very basic rounding technique: randomized rounding. Given an LP solution x ∈ [0, 1]n, this
technique independently rounds each variable i to 1 with probability xi and to 0 otherwise for
some fixed (usually linear) function f : [0, 1]→ [0, 1].

2.1 Chernoff Bounds and the Union Bound

Chernoff bounds are immensely important for understanding independent randomized rounding
procedures.

Theorem 2.1 (Chernoff Lower Tail). Let X1, . . . , Xn be independent Bernoulli random variables. Then if
X = ∑n

i=1 Xi, L ≤ E [X], and 0 ≤ δ ≤ 1, we have:

P [X ≤ (1− δ)L] ≤ exp(−Lδ2/2)

Theorem 2.2 (Chernoff Upper Tails). Let X1, . . . , Xn be independent Bernoulli random variables. Let
X = ∑n

i=1 Xi, E [X] ≤ U. For all δ > 0, we have

P [X ≥ (1 + δ)U] ≤ exp(−Uδ2/(2 + δ)).

Notice that if δ ≤ 1 then we can use exp(−Uδ2/3). As δ grows, the following bound is superior and holds
for δ ≥ 2:

P [X ≥ (1 + δ)U] ≤ exp(−Uδ ln δ/4)

Here’s the version these bounds come from, which we often avoid because it’s a bit annoying
to use, but can be slightly stronger:

Theorem 2.3 (Mother-of-all Chernoff Bounds). Let X1, . . . , Xn be independent Bernoulli random
variables. Then if X = ∑n

i=1 Xi, µ = E [X], L ≤ µ ≤ U, and δ > 0, we have:

P [X ≥ (1 + δ)U] <

(
eδ

(1 + δ)1+δ

)U

.

and for 0 < δ < 1,

P [X ≤ (1− δ)U] <

(
e−δ

(1− δ)1−δ

)L

Finally I will give one more bound that is useful for variables that are not binary.

Theorem 2.4 (More General Chernoff). Let X1, . . . , Xn be independent random variables with E [Xi] = 0
and |Xi| ≤ ai for each i. Let X = ∑n

i=1 Xi. Then if δ ≥ 0, we have

P [|X| ≥ λ‖a‖2] ≤ 2 exp(−λ2/4)
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Note that the lower and upper tails are qualitatively different in the following way. Using
the lower tail for δ = 1− ε,

P [X ≤ εE [X]] ≤ e−E[X](1−ε)2/2

But using the upper tail for δ = 1
ε ,

P

[
X ≥ 1

ε
E [X]

]
≤ e−E[X] 1

4ε ln( 1
ε )

Thus, the probability X is less than 1
100 times your expectation is approximately upper bounded

by e−E[X]. The probability X is at least 100 times its expectation is approximately upper bounded
by e−100E[X]. As ε→ 0, these two quantities become very different. You will see this come up in
the second homework.

Chernoff bounds are often coupled with the union bound.

Theorem 2.5 (Union Bound). Let B1, . . . , Bn be a set of bad events over a probability space. Then,

P
[
B1 ∧ · · · ∧ Bn

]
≥ 1−

n

∑
i=1

P [Bi]

This is simply because the probability any one of the bad events happens is at most ∑n
i=1 P [Bi],

corresponding to the possibility that they all occur at different times.

2.2 A Simple Example of Chernoff/Union Bound: Balls in Bins

Suppose we throw n balls into n bins, each ball going into a bin uniformly at random. Then, we
can bound the probability any bin gets more than 12 ln n balls.

The expected number of balls in any one bin is 1. Lazily applying the first Chernoff upper tail
for δ = 1, U = ln n, we get:

P [Bin i has at least 12 ln n balls] ≤ exp(−6 ln n/3) =
1
n2

This creates n bad events of probability at most 1
n2 each. So the probability we avoid all of them,

by the union bound, is at least 1− 1/n.
This can be improved to O(log n/ log log n) with a couple more lines of computation.

2.3 Congestion Minimization for Multi-Commodity Flows

To explain randomized rounding we will work on the minimum-congestion multicommodity flow
problem. Here we are given a directed graph G = (V, A) and k pairs of vertices si, ti ∈ V for
1 ≤ i ≤ k. The goal is to produce a path from si to ti for each i so that the number of paths using
any single edge is minimized.
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Let’s relax and round. Step 1 is to model the problem as an ILP. The natural one is as follows,
where Pi is the set of simple paths from si to ti in G.

min λ

s.t. ∑
P∈Pi

xP = 1 ∀1 ≤ i ≤ k

∑
P:e∈P

xP ≤ λ ∀e ∈ E

xP ∈ {0, 1} ∀P ∈ Pi, 1 ≤ i ≤ k

This is equivalent to the original problem. Now let’s do Step 2: relax this to an LP, by replacing
the requirement that xP ∈ {0, 1} with 0 ≤ xP ≤ 1. At this point, we need to solve the LP in
polynomial time to continue with the framework. But we realize an issue: there are exponentially
many variables. It turns out this is easy to circumvent. An equivalent problem is to just find a
feasible flow for each i. We can easily encode this as an LP.

min λ

s.t. ∑
a∈δ+(v)

f i
a = ∑

a∈δ−(v)
f i
a ∀1 ≤ i ≤ k, v ∈ V, v 6= si, ti

∑
a∈δ+(si)

f i
a = 1 ∀1 ≤ i ≤ k

k

∑
i=1

f i
a ≤ λ ∀a ∈ A

0 ≤ f i
a ≤ 1 ∀1 ≤ i ≤ k, a ∈ A

Now, we can use this to solve the previous LP (and obtain the same objective value) with a
polynomial number of non-zero values xP by doing a flow decomposition.

Lemma 2.6. Given a solution f to the flow LP above of value λ, we can construct a solution x in polynomial
time to the path LP with polynomially many non-zero xP.

Proof. For each flow f i, find a path P from si to ti using edges with f i
a > 0. Set xP = mina∈P f i

a in
Pi. Then, set f i

a = f i
a − xP for all a ∈ P. Repeat until no paths remain using edges with positive

flow value. By flow conservation, ∑P∈Pi
xP = 1 at the end of this process.

We will now work with our solution x that has polynomially many non-zero entries and
perform independent randomized rounding. To do so, we will treat each Pi as a distribution for
each i, and we will sample exactly one path such that the probability we take path P for P ∈ Pi
is exactly xP. Our output will be the set of paths we pick. We will now argue that with high
probability, the congestion is not too large compared to OPT.

Lemma 2.7. With high probability the congestion is O(log n) ·max{1, λ}. Thus, with high probability
we obtain a O(log n) approximation on the minimum congestion.1

1In the first homework you will sharpen this to O(log n/ log log n).
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Proof. For each arc a and 1 ≤ i ≤ k, we create a random variable Xi
a which is 1 if the path chosen

for pair si, ti contains a and 0 otherwise. For each arc let Ca = ∑k
i=1 Xi

a denote the congestion on a.
Then,

E [Ya] =
k

∑
i=1

∑
P∈Pi :a∈P

xP ≤ λ

Now note that for every arc a, Xi
a is independent of X j

a for i 6= j. So, we can (lazily) apply a
Chernoff bound for U = c ln n · λ′ (where λ′ = max{1, λ}) and δ = 1 for some c we will choose
later. Then we have:

P
[
X ≥ 2c ln n · λ′

]
≤ e−c ln n·λ′/3 = n−cλ′/3 ≤ n−c/3

Choose c ≥ 6. Then, the probability any individual edge has congestion greater than O(log n) · λ′
is at most 1

n2 . Now by the union bound, all edges have congestion at most O(log n) · λ′ with
probability at least 1− 1

n .

Notice this is a situation (as hinted at in the last lecture) in which the integrality gap may be
much larger than the claimed approximation ratio! Indeed, even if we have only one si, ti pair, we
can potentially spread the congestion out to get a solution of cost O( 1

n ), but clearly we need to
have congestion at least 1.

After sharpening this to O(log n/ log log n), it turns out this is optimal. There is an integrality
gap (with λ ≥ 1) with this value, and it is NP-Hard to do better than this.
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